Boosting the Thermoelectric Performance of Calcium Cobaltite Composites through Structural Defect Engineering
نویسندگان
چکیده
منابع مشابه
Designing high-performance layered thermoelectric materials through orbital engineering
Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet succes...
متن کاملCarbon fiber polymer–matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit
The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix composites is greatly improved by adding tellurium particles (13 vol.%), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%). The thermoelectric power is increased from 8 to 163 lV/K, the electrical resistivity is decreased from 0.17 to 0.02.X.cm, the thermal conductivity is decreased from 1.31 to...
متن کاملEnhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering
The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing...
متن کاملEnhancing thermoelectric properties of organic composites through hierarchical nanostructures
Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythioph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Applied Materials & Interfaces
سال: 2020
ISSN: 1944-8244,1944-8252
DOI: 10.1021/acsami.0c03297